Digital Mapping of Resource Boundaries

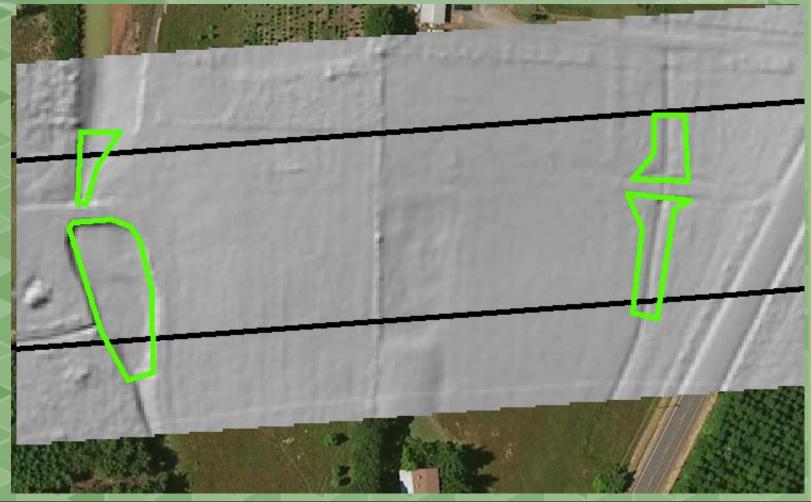
Global Positioning System (GPS)
Limitations and Solutions

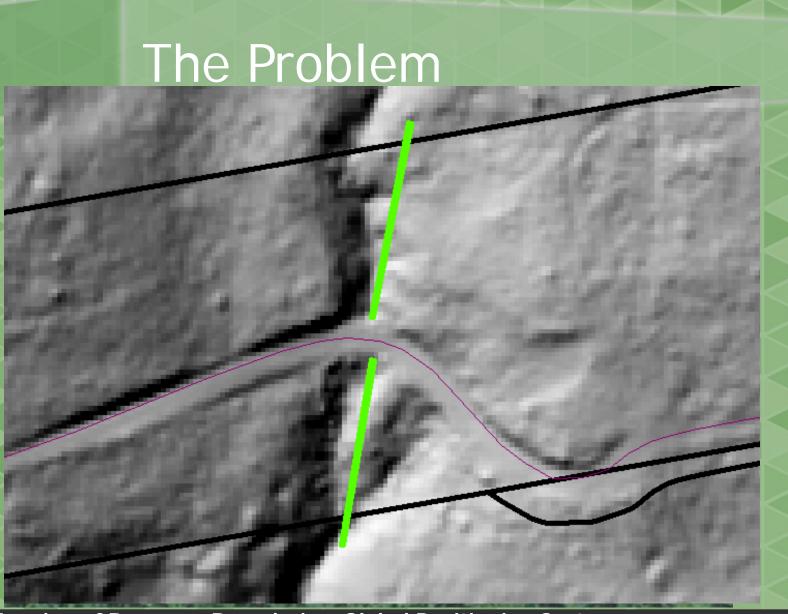
Kristen Currens, Mason, Bruce & Girard, Inc.

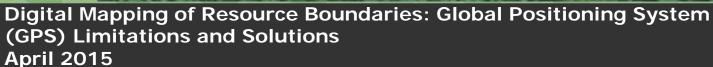
GPS Accuracy

Accuracy is the twin brother of honesty; inaccuracy, of dishonesty. -Nathaniel Hawthorne

Universalis Cosmographia, Waldseemüller's 1507 world map


Accuracy vs. Precision




Precise and accurate

The Problem

The Problem

Estimated accuracies for 270 corrected positions are as follows:

Range Percentage

0-5cm	85 - 24
5-15cm	44.44%
15-30cm	
30-50cm	12.59%
0.5-1m	18.89%
1-2m	18.52%
2-5m	5.56%
>5m	

Differential correction complete.

The Problem

0.14m

GeoXT 6000 Post Corrected

Estimated accuracies for 270 corrected positions are as follows:

Range Percentage

0-5cm	90 1 0
5-15cm	44.44%
15-30cm	_
30-50cm	12.59%
0.5-1m	18.89%
1-2m	18.52%
2-5m	5.56%
>5m	

Differential correction complete.

Monument /

0.45m

Estimated accuracies for 210 corrected positions are as follows:

Range Percentage

0-5cm 5-15cm 15-30cm 30-50cm 83.33%
0.5-1m 11.90%
1-2m 2.38%
2-5m 2.38%
>5m -

Differential correction complete.

95% better than 1 meter

GeoXT 2005 Post Corrected

75% better than 1 meter

Accuracy Outputs

= Precision

```
Estimated accuracies for 270 corrected positions are as follows:

Range Percentage

------
0-5cm -
5-15cm 44.44%
15-30cm -
30-50cm 12.59%
0.5-1m 18.89%
1-2m 18.52%
2-5m 5.56%
>5m -
```


Differential correction complete.

Measured Accuracy

GPS Accuracy

Accuracy is limited by:

- Equipment
- Site and satellite constraints
- Pre-field, field, and post-processing methods

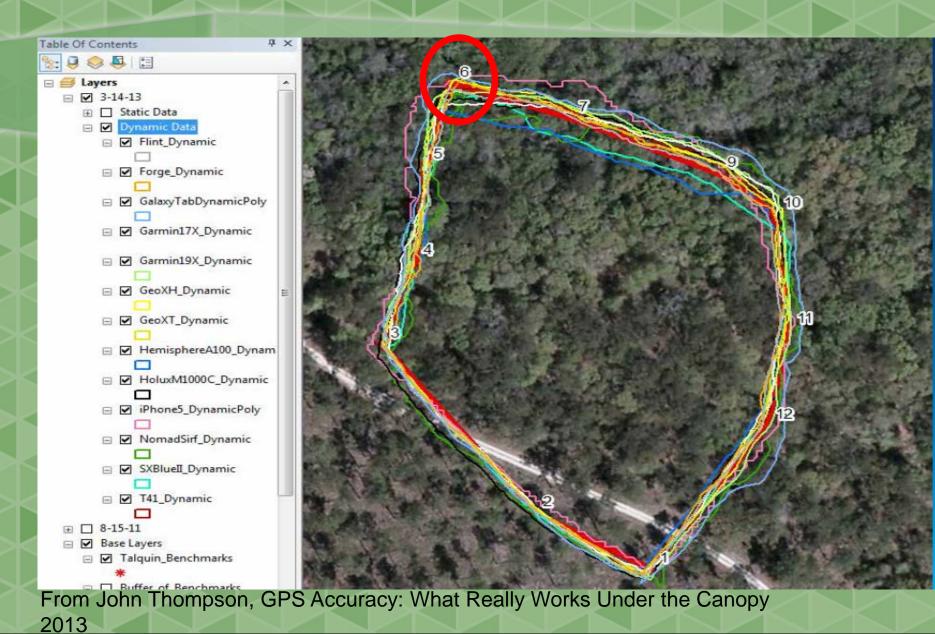
GPS Accuracy Equipment

3 grades:

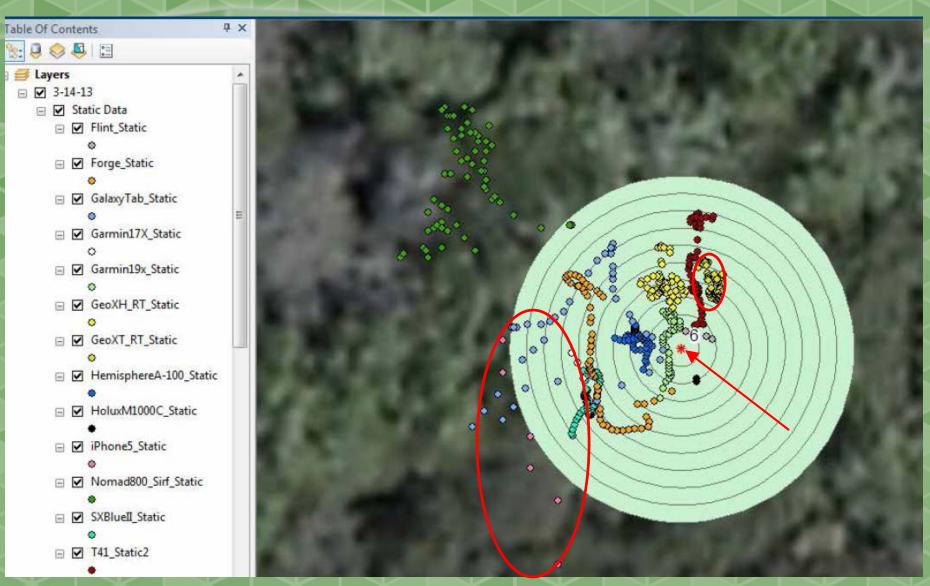
- Consumer >3 meters
- Mapping 1-3 meters

GPS Accuracy Equipment

3 grades:


Professional (sub-meter) < 1 meter

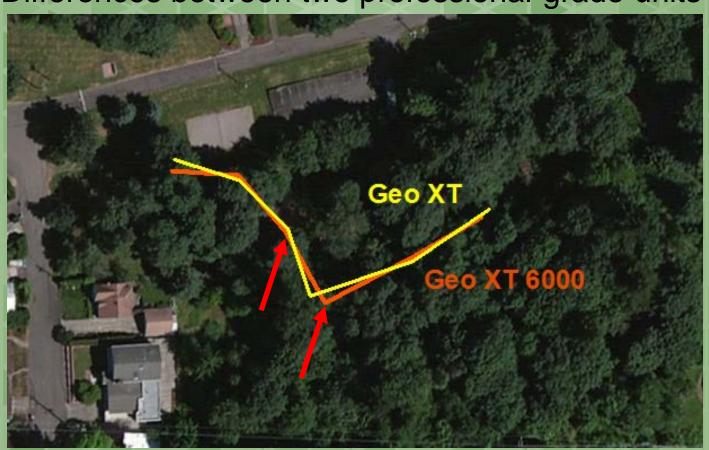
GPS Accuracy Site and Satellite Constraints


- Site Constraints:
 - Steep topography
 - Buildings
 - Dense vegetation cover
- Satellite Constraints:
 - Satellite geometry
 - Multipath

Digital Mapping of Resource Boundaries: Global Positioning System (GPS) Limitations and Solutions
April 2015

MB&G

From John Thompson, GPS Accuracy: What Really Works Under the Canopy 2013


GPS	Avg Error (m)	Rank
Post Processed GeoXH 6000 GLONASS	0.75	1
Garmin_19X	1.63	2
Flint_Internal	1.85	3
Post Processed GeoXT 6000 WAAS	1.87	4
Holux_M1000C	1.99	5
Hemisphere_A100	2.66	6
GeoXH 6000 GLONASS	3.97	7
Trimble T41	4.02	8
GeoXT 6000 WAAS	4.36	9
Forge_Internal	5.73	10
SX_Blue II	6.18	11
iPhone5	10.57	12
GalaxyTab	15.60	13
Nomad_800_Internal	16.08	14

From John Thompson, GPS Accuracy: What Really Works Under the Canopy 2013

GPS Accuracy Equipment

Differences between two professional-grade units

GPS Accuracy Methodology

Pre-field Methodology

- GPS settings ("Smart Settings")
- Pathfinder trip planning

GPS Accuracy Methodology

Field Methodology

- Back to the north
- Hold unit with receiver pointing directly up
- Hold still with unit at the same vertical and horizontal position
- Collect at least one surveyed monument/day

GPS Accuracy Methodology

Post-processing Methodology

- Office processing ensures best results
- Compares monument locations to select the best basestation

Project Management Implications

Fast is fine, but accuracy is everything. -Wyatt Earp

Quality of other project data collected by:

- Other entities
- Different equipment
- High standards and protocols necessary

Get help from your product vendors

Mason, Bruce & Girard, Inc.

Natural Resource Consulting Since 1921

Integrity | Quality | Expertise | Client Service